# 口服葛根总黄酮固体脂质纳米粒冻干粉的制备及其 4 种成分释放度考察

孟祥平1,周群2,王治平3\*,樊化4,王一飞4

- 1. 河南科技大学医学技术与工程学院,河南 洛阳 471003
- 2. 华中科技大学同济药学院,湖北 武汉 430030
- 3. 广东药学院药科学院,广东广州 510006
- 4. 暨南大学生物医药研究院,广东广州 510632

摘 要:目的 制备口服葛根总黄酮固体脂质纳米粒冻干粉并考察其主要有效成分 3'-羟基葛根素、葛根素、大豆苷和大豆苷元的释放度。方法 采用高压均质法制备葛根总黄酮固体脂质纳米粒混悬液,以甘露醇为冻干保护剂制备冻干粉,以人工胃液(pH 1.2)为溶出介质,考察葛根总黄酮固体脂质纳米粒冻干粉中 4 种有效成分的释放度。结果 正交试验优选制备工艺:脂质-表面活性剂比例及用量为 2 1 及 2.0%、葛根总黄酮用量 2.5%、150 MPa 均质 15 次,并制备葛根总黄酮固体脂质纳米粒冻干粉,其粒径、多分散指数及 Zeta 电位分别为( $517.1\pm10.3$ )nm、 $0.484\pm0.210$  及( $-21.91\pm2.03$ )mV。葛根总黄酮固体脂质纳米粒冻干粉中 4 种有效成分的释放速率显著低于其物理混合物,具有明显的缓释特征。结论 葛根总黄酮固体脂质纳米粒冻干粉制备方法简便,能显著延缓主要有效成分的释放速率,有望成为葛根总黄酮的新型纳米给药系统。

关键词:葛根总黄酮;固体脂质纳米粒;有效成分;释放度;冻干粉;3'-羟基葛根素;葛根素;大豆苷;大豆苷元

中图分类号:R283.6 文献标志码:A 文章编号:0253 - 2670(2014)17 - 2467 - 08

**DOI:** 10.7501/j.issn.0253-2670.2014.17.009

# Preparation of lyophilized powder in oral *Pueraria* flavonoids loaded solid lipid nanoparticles and determination of release rate of its four effective components

MENG Xiang-ping<sup>1</sup>, ZHOU Qun<sup>2</sup>, WANG Zhi-ping<sup>3</sup>, FAN Hua<sup>4</sup>, WANG Yi-fei<sup>4</sup>

- 1. Medical Technology and Engineering College, Henan University of Science and Technology, Luoyang 471003, China
- 2. Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- 3. School of Pharmacology, Guangdong Pharmaceutical University, Guangzhou 510006, China
- 4. Institute of Biological Medicine, Jinan University, Guangzhou 510632, China

**Abstract: Objective** To prepare the lyophilized powder of *Pueraria* flavonoids loaded solid lipid nanoparticles (PF-SLN) and determine the dissolution rate of its four effective components: 3'-hydroxypuerarin, puerarin, daidzin, and daidzein. **Methods** PF-SLN was prepared by the high pressure homogenization (HPH) technology. The lyophilized formula contained mannitol as cryoprotectant. The release rates of the four effective components from the PF-SLN lyophilized powder as well as the physical mixture were determined, with artificial gastric juice (pH 1.2) as dissolvent. **Results** The technical parameters of PF-SLN preparation optimized by orthogonal test were as follows: The ratio and the dosage of lipid-surfactant were 2 1 and 2.0%, PF dosage was 2.5%, and 150 MPa homogeneity was 15 cycles. The optimal PF-SLN lyophilized powder was loosen with the particle size of (517.1  $\pm$  10.3) nm, polydisperse index of 0.484  $\pm$  0.210, and Zeta potential of ( $-21.91 \pm 2.03$ ) mV, respectively. The *in vitro* accumulated dissolution rates of PF-SLN lyophilized powder were slower than those of the physical mixture. **Conclusion** The method employed to prepare PF-SLN lyophilized powder is feasible. PF-SLN lyophilized powder could delay the *in vitro* dissolution rate notablely. It might be a novel vehicle potentially for nano-drug delivery system of *Pueraria* flavonoids.

**Key words:** *Pueraria* flavonoids; solid lipid nanoparticles; effective components; release rate; lyophilized powder; 3'-hydroxypuerarin; puerarin; daidzin; daidzein

收稿日期:2014-03-11

基金项目:国家重大新药创制项目(2011ZX09401-307)

作者简介:孟祥平,讲师,主要从事中药及蛋白质药物的研究。E-mail: mxiangping@163.com

\*通信作者 王治平,男,博士,专业方向为中药药效物质、新剂型及质量控制研究。Tel: 13570314011 E-mail: wzping\_jshb@126.com

葛根为豆科植物野葛 Pueraria lobata (Willd.) Ohwi 的干燥根<sup>[1]</sup>,其化学成分主要有异黄酮类、三萜类、皂苷类、香豆素类及葛酚苷类等化合物<sup>[2]</sup>。葛根总黄酮(Pueraria flavonoids,PF)是葛根的有效部位,具有活血化瘀之功,用于缺血性中风中经络恢复期瘀血痹阻脉络证<sup>[3]</sup>。有关 PF 的化学成分、药理作用及提高生物利用度措施等已在先前报道<sup>[4]</sup>中提及,在此不再赘述。

固体脂质纳米粒(solid lipid nanoparticles SLN)由生理性脂质、表面活性剂和水组成,既具备聚合物纳米粒物理稳定性高、药物泄漏少等优点,又兼备脂质体、微乳等低毒性、规模化生产等优点,是一种极具发展前景的新型给药载体系统,而受到各发达国家的广泛重视<sup>[5]</sup>。SLN 可增强与生物膜的黏附性,延长药物在胃肠道的黏附时间和滞留时间,有效地提高药物生物利用度<sup>[6]</sup>。

为提高 PF 溶解性、稳定性和生物利用度,本实验采用高压均质技术制备 PF 固体脂质纳米粒(PF-SLN)加入甘露醇冷冻干燥得 PF-SLN 冻干粉。采用转篮法考察其中 4 种有效成分的溶出度,为其临床前研究奠定基础。

#### 1 仪器与材料

NanoGenizer型高压均质机(苏州微流纳米代理);聚山梨酯80(P80,上海国药集团化学试剂有限公司,批号F20091214);其他试剂及仪器信息见文献报道<sup>[4]</sup>。2 方法与结果

## 2.1 PF 定量测定[3]

标准曲线的制备及 PF 定量测定方法见文献报  $ilde{\mathbf{j}}^{[4]}$ 。测得以葛根素计的 PF 的量为 62.19%。

# 2.2 PF 包封率及载药量测定方法<sup>[7-8]</sup>

游离  $PF(W_F)$ 测定:精密吸取 PF-SLN 1.0 mL, 置离心管中,离心( $14\ 000\ r/min$ )  $30\ min$ ,取上清液适当稀释,按"2.1"项下方法测定总黄酮,即得。

PF-SLN 总药量 ( $W_T$ )测定:精密吸取 PF-SLN 0.5 mL,置 5 mL 量瓶中,加入乙醇稀释至刻度,摇匀,滤过,取滤液适当稀释,同法测定总黄酮,即得。按公式:包封率 = ( $W_T$  -  $W_F$ ) /  $W_T$  , 载药量 = ( $W_T$  -  $W_F$ ) /  $W_S$  ( $W_S$  为载体材料及药物的总量),计算包封率及载药量。

## 2.3 PF-SLN 制备

采用高压均质法<sup>[9-12]</sup>制备 PF-SLN。经过预试验确定了以表面活性剂 P80、固体脂质 GB 为主的 PF-SLN 处方。称取处方量的 GB 及 PF,在(85±2)水浴加热融化,混匀,为脂质相;另取处方量的 P80,加适量超纯水分散,置同温水浴中,为水相。在保温状态下,将水相倒入脂质相中,搅匀,先高速分散机 4 000 r/min 分散 10 min(预试验发现,低于 10 min,则需增大高压均质次数,才能制得合适粒径的 SLN;而超过 10 min,分散形成的泡沫过多,严重影响后续操作),得微乳,趁热用高压均质机均质10次(150 MPa),即得 PF-SLN。以粒径、多分散指数(polydispersity index,PDI)、Zeta 电位、包封率及载药量等指标,优化 GB-P80 比例及其用量、PF 原料用量、均质压力和次数。

2.3.1 GB-P80 比例 固定 GB-P80 及 PF 原料用量分别为 1.0%及 2.5%,考察 GB-P80 不同比例对 PF-SLN 粒径、Zeta 电位等参数的影响,结果见表 1。由考察结果可知,当 GB-P80 比例为 2 1 时,所得 PF-SLN 的包封率及 Zeta 电位较高,当 GB-P80 比例为 1 3 时,所得 PF-SLN 的包封率及 Zeta 电位较低。综合考虑,选择固体脂质、表面活性剂 GB-P80 的比例为 2 1。

2.3.2 GB-P80 用量 固定 GB-P80 比例 2 1、PF 原料用量 2.5% ,考察 GB-P80 不同用量对 PF-SLN 包封率、粒径、Zeta 电位等参数的影响 , 结果见表 2。由考察结果可知 , 当 GB-P80 用量为 2.0%时 ,所得 PF-SLN 的包封率高、PDI 和粒径最小而

表 1 GB-P80 不同比例对 PF-SLN 参数的影响( $\bar{x} \pm s$ , n = 3) Table 1 Effect of GB and P80 ratios on parameters of PF-SLN( $\bar{x} \pm s$ , n = 3)

| GB-P80 比例 | 包封率 / % | PDI               | 粒径 / nm          | Zeta 电位 / mV      |
|-----------|---------|-------------------|------------------|-------------------|
| 3 1       | 85.27   | $0.577 \pm 0.391$ | 548.7 ± 16.9     | $-19.29 \pm 3.04$ |
| 2 1       | 90.13   | $0.463 \pm 0.234$ | $517.8 \pm 18.3$ | $-20.33 \pm 2.37$ |
| 1 1       | 79.66   | $0.539 \pm 0.272$ | $537.3 \pm 17.7$ | $-19.37 \pm 2.82$ |
| 1 2       | 63.49   | $0.448 \pm 0.193$ | $508.3 \pm 13.1$ | $-18.59 \pm 2.72$ |
| 1 3       | 51.91   | $0.419 \pm 0.261$ | $489.9 \pm 16.2$ | $-17.81 \pm 2.41$ |

| Table 2       | Table 2 Effect of GB and P80 dosages on parameters of PF-SLN ( $\bar{x} \pm s$ , $n = 3$ ) |                   |                  |                   |  |  |  |  |  |  |
|---------------|--------------------------------------------------------------------------------------------|-------------------|------------------|-------------------|--|--|--|--|--|--|
| GB-P80 用量 / % | 包封率 / %                                                                                    | PDI               | 粒径 / nm          | Zeta 电位 / mV      |  |  |  |  |  |  |
| 0.5           | 85.19                                                                                      | $0.464 \pm 0.183$ | 522.6 ± 17.1     | $-18.31 \pm 2.03$ |  |  |  |  |  |  |
| 1.0           | 90.13                                                                                      | $0.463 \pm 0.232$ | $517.8 \pm 18.3$ | $-20.33 \pm 2.37$ |  |  |  |  |  |  |
| 1.5           | 91.69                                                                                      | $0.464 \pm 0.214$ | $519.1 \pm 18.1$ | $-21.31 \pm 2.97$ |  |  |  |  |  |  |
| 2.0           | 93.45                                                                                      | $0.451 \pm 0.171$ | $509.1 \pm 12.8$ | $-21.59 \pm 2.79$ |  |  |  |  |  |  |
| 2.5           | 93.91                                                                                      | $0.509 \pm 0.294$ | $529.3 \pm 18.6$ | $-19.88 \pm 2.49$ |  |  |  |  |  |  |

表 2 GB-P80 不同用量对 PF-SLN 参数的影响  $(\bar{x} \pm s, n = 3)$ 

Zeta 电位最高,稳定性较高,故选择 GB-P80 的用量为 2.0%。

2.3.3 PF 原料用量 固定 GB-P80 比例 2 1、用量 2.0%,考察 PF 原料不同用量对 PF-SLN 粒径、电位等参数的影响,结果见表 3。由考察结果可知,当 PF 用量为 1.0%~2.5%时,所得 PF-SLN 的 PDI、粒径均较小而 Zeta 电位均较高,稳定性较好。为减少临床口服剂量,故选择 PF 原料用量为 2.5%。

表 3 PF 原料不同用量对 PF-SLN 参数的影响  $(\bar{x} \pm s, n = 3)$ 

Table 3 Effect of PF dosages on parameters of PF-SLN  $(\bar{x} \pm s, n = 3)$ 

| DE / 0/        | <b>与</b> ±+ <del>*</del> / 0/ | PDI               | 粒径 / nm          | Zeta 电位 /         |
|----------------|-------------------------------|-------------------|------------------|-------------------|
| PF / % 包封率 / % |                               | PDI               | ↑V1全 / nm        | mV                |
| 1.0            | 93.39                         | $0.419 \pm 0.231$ | $505.3 \pm 16.8$ | $-19.97 \pm 2.11$ |
| 1.5            | 93.41                         | $0.439 \pm 0.274$ | $513.9 \pm 16.9$ | $-20.37 \pm 2.31$ |
| 2.0            | 93.46                         | $0.454 \pm 0.282$ | $516.3 \pm 17.7$ | $-21.38 \pm 2.91$ |
| 2.5            | 93.45                         | $0.457 \pm 0.174$ | $509.1 \pm 12.8$ | $-21.59 \pm 2.79$ |
| 3.0            | 83.93                         | $0.513 \pm 0.372$ | 538.6 ± 19.9     | $-18.89 \pm 2.67$ |

2.3.4 均质压力及均质时间 固定 GB-P80 比例 2 1、用量 2.0%及 PF 原料用量 2.5%, 考察均质压力和时间对 PF-SLN 粒径、电位等参数的影响,结果见表 4。由考察结果可知,当均质压力 150 MPa 时,均质 15 及 20 次所得 PF-SLN 的 PDI、粒径均较小而 Zeta 电位均较高,但无显著性差异。为节能降耗,故选择均质压力和时间分别为 150 MPa、15 次。

2.3.5 正交试验优选 PF-SLN 处方工艺 在以上单因素试验基础上,以 GB-P80 比例 (A) GB-P80 用量 (B) PF 原料用量 (C) 为考察因素,每个因素选取 3 个水平,固定均质压力和时间为 150 MPa、15 次,按  $L_9(3^4)$  因素水平表进行试验(表 5),以包封率、粒径、PDI、Zeta 电位为指标筛选最佳处方组成,试验结果见表 5。

采用直观分析法,由表 5 极差值可知,各因素对包封率、粒径及 PDI 的影响程度及最佳处方分别为 B > A > C、A > C > B、B > C > A 及  $A_1B_2C_1$ 、  $A_2B_2C_2$ 、 $A_2B_2C_2$ ;而各因素对电位的极差值与误差项极差值接近,表明各因素对电位影响小。采用方差分析法,由表 6 中 F 值及 P 值可知,GB-P80 比例(因素 A)对粒径有显著影响(F 值 31.365、P < 0.05),GB-P80 用量(因素 B)对包封率影响非常显著(F 值 91.613、P < 0.01)、因素 B 对 PDI 有显著影响(F 值 39.333、P < 0.05),PF 用量(因素 C)对电位有显著影响(F 值 22.817、P < 0.05)。

2.3.6 PF-SLN 制备工艺验证 上述单因素试验和正交试验优选所得 PF-SLN 制备工艺参数略有不同,GB-P80 比例及用量均为 2 1 及 2.0%,PF 用量分别为 2.0%及 2.5%。根据"2.3.3"项下结果可知,当 PF 用量为 1.0%~2.5%时,其 PDI、粒径均较小而电位均较高,为减少服用量,选择 2.5% PF。因此,最佳工艺条件为 GB-P80 比例及用量为 2 1 及 2.0%、PF 用量 2.5%、150 MPa 均质 15 次。据此工艺条件连续生产 3 批,所得 PF-SLN 的包封率为

表 4 均质压力和时间对 PF-SLN 参数的影响  $(\bar{x} \pm s, n = 3)$ 

Table 4 Effects of HPH pressure and time on parameters of PF-SLN ( $\bar{x} \pm s$ , n = 3)

| 均质压力 / MPa (均质时间 / 次) | 包封率 /% | PDI               | 粒径 / nm          | Zeta 电位 / mV      |
|-----------------------|--------|-------------------|------------------|-------------------|
| 100 ( 15 )            | 87.63  | $0.471 \pm 0.313$ | $533.1 \pm 18.2$ | $-19.93 \pm 2.18$ |
| 100 ( 20 )            | 90.46  | $0.469 \pm 0.291$ | $527.8 \pm 17.7$ | $-20.31 \pm 2.72$ |
| 150 ( 15 )            | 93.45  | $0.457 \pm 0.174$ | $509.1 \pm 12.8$ | $-22.59 \pm 2.79$ |
| 150 ( 20 )            | 93.51  | $0.451 \pm 0.193$ | $508.8 \pm 11.9$ | $-22.76 \pm 2.28$ |

|         | 表 5       | L <sub>9</sub> (3 <sup>4</sup> ) 正交i | 试验设计及结果                                     |           |
|---------|-----------|--------------------------------------|---------------------------------------------|-----------|
| Tab     | le 5 Desi | gn and result                        | of L <sub>9</sub> (3 <sup>4</sup> ) orthogo | onal test |
| <u></u> | C / %     | D (空白)                               | 句封窓 /%                                      | 粒径 /      |

| 试验  | 号     | A       | B / %   | C / %   | D (空白)  | 包封率 / % | 粒径 / nm | PDI   | Zeta 电位 / mV |
|-----|-------|---------|---------|---------|---------|---------|---------|-------|--------------|
| 1   |       | 3 1 (1) | 1.0(1)  | 1.0(1)  | (1)     | 87.02   | 533.5   | 0.578 | -19.29       |
| 2   |       | 3 1 (1) | 2.0(2)  | 2.0(2)  | (2)     | 93.46   | 508.4   | 0.461 | -18.37       |
| 3   |       | 3 1 (1) | 3.0(3)  | 3.0(3)  | (3)     | 81.86   | 554.9   | 0.526 | -20.33       |
| 4   |       | 2 1 (2) | 1.0(1)  | 2.0(2)  | (3)     | 83.92   | 504.3   | 0.509 | -18.26       |
| 5   |       | 2 1 (2) | 2.0(2)  | 3.0(3)  | (1)     | 88.65   | 509.6   | 0.476 | -20.56       |
| 6   |       | 2 1 (2) | 3.0(3)  | 1.0(1)  | (2)     | 82.49   | 518.1   | 0.512 | -18.67       |
| 7   |       | 1 1 (3) | 1.0(1)  | 3.0(3)  | (2)     | 84.76   | 568.4   | 0.556 | -19.81       |
| 8   |       | 1 1 (3) | 2.0(2)  | 1.0(1)  | (3)     | 92.11   | 543.1   | 0.468 | -17.65       |
| 9   |       | 1 1 (3) | 3.0(3)  | 2.0(2)  | (1)     | 83.61   | 538.4   | 0.486 | -21.10       |
| 包封率 | $K_1$ | 262.34  | 255.70  | 261.62  | 259.28  |         |         |       |              |
|     | $K_2$ | 255.06  | 274.22  | 260.99  | 260.71  |         |         |       |              |
|     | $K_3$ | 260.48  | 247.96  | 255.27  | 257.89  |         |         |       |              |
|     | R     | 7.28    | 26.26   | 6.35    | 2.82    |         |         |       |              |
| 粒径  | $K_1$ | 1 596.8 | 1 606.2 | 1 594.7 | 1 581.5 |         |         |       |              |
|     | $K_2$ | 1 532.0 | 1 561.1 | 1 551.1 | 1 594.9 |         |         |       |              |
|     | $K_3$ | 1 649.9 | 1 611.4 | 1 632.9 | 1 602.3 |         |         |       |              |
|     | R     | 117.9   | 50.3    | 81.8    | 20.8    |         |         |       |              |
| PDI | $K_1$ | 1.566   | 1.644   | 1.557   | 1.539   |         |         |       |              |
|     | $K_2$ | 1.497   | 1.404   | 1.455   | 1.530   |         |         |       |              |
|     | $K_3$ | 1.509   | 1.524   | 1.557   | 1.503   |         |         |       |              |
|     | R     | 0.069   | 0.240   | 0.102   | 0.036   |         |         |       |              |
| 电位  | $K_1$ | -57.99  | -57.36  | -55.61  | -60.95  |         |         |       |              |
|     | $K_2$ | -57.49  | -56.58  | -57.73  | -56.85  |         |         |       |              |
|     | $K_3$ | -58.56  | -60.10  | -60.70  | -56.24  |         |         |       |              |
|     | R     | 1.07    | 3.52    | 5.09    | 4.71    |         |         |       |              |

表 6 方差分析 Table 6 Analysis of variance

|        |       | 包封率     |        | 粒径              |           | PDI    |          |                       | 电位     |          |       |        |          |
|--------|-------|---------|--------|-----------------|-----------|--------|----------|-----------------------|--------|----------|-------|--------|----------|
| 因素 自由度 | 偏差平方和 | F 值     | 显著性    | 偏差平方和           | F 值       | 显著性    | 偏差平方和    | F 值                   | 显著性    | 偏差平方和    | F 值   | 显著性    |          |
| A      | 2     | 9.537   | 7.198  |                 | 2 324.340 | 31.365 | P < 0.05 | $8.69 \times 10^{-4}$ | 3.625  |          | 0.191 | 1.000  |          |
| В      | 2     | 121.387 | 91.613 | <i>P</i> < 0.01 | 510.127   | 6.884  |          | $9.44 \times 10^{-3}$ | 39.333 | P < 0.05 | 2.278 | 11.927 |          |
| C      | 2     | 8.160   | 6.158  |                 | 1 116.827 | 15.070 |          | $2.31 \times 10^{-3}$ | 9.625  |          | 4.358 | 22.817 | P < 0.05 |
| D      | 2     | 1.325   | 1.000  |                 | 74.107    | 1.000  |          | $2.41 \times 10^{-4}$ | 1.000  |          | 4.374 | 22.901 | P < 0.05 |

 $F_{0.05}(2, 2) = 19.00$   $F_{0.01}(2, 2) = 99.00$ 

(93.77±3.91)%、PDI为 0.421±0.16、Zeta 电位为 (-31.07±1.97) mV, 粒径为 (497.3±12.9) nm。

# 2.4 PF-SLN 冻干粉制备及验证

为保持 PF-SLN 的稳定,将" 2.3.6 " 项下验证 生产的 3 批 PF-SLN 分别添加 0.5%甘露醇于–80

冰箱中预冻 8 h , 冷冻干燥 (-40 , -0.01 MPa) 20 h , 得浅灰色疏松冻干粉。

# 2.5 PF 物理混合物冻干粉制备

称取处方量的 GB、P80、PF 原料及甘露醇,加适量超纯水分散均匀,同法冷冻干燥,得 PF 物

理混合物冻干粉。

#### 2.6 PF-SLN 冻干粉表征

2.6.1 PF-SLN 冻干粉的粒径、PDI 及 Zeta 电位测定 采用激光粒度仪测定 PF-SLN 冻干粉的粒径、PDI 及 Zeta 电位。PF-SLN 用超纯水稀释 25 倍测定粒径,原液直接测定 Zeta 电位。PF-SLN 冻干粉用超纯水制成适宜质量浓度的溶液,测定粒径及 Zeta电位。测定粒径分布见图 1。PF-SLN 冻干粉的平均粒径、PDI 及 Zeta 电位分别为(517.1  $\pm$  10.3)nm、0.484  $\pm$  0.210 及(-21.91  $\pm$  2.03)mV;而冻干前PF-SLN 分别为(371.2  $\pm$  6.4)nm、0.466  $\pm$  0.190 及(-23.13  $\pm$  2.24)mV。

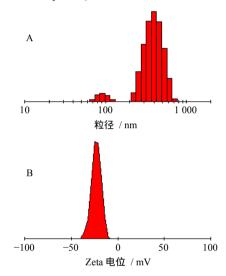



图 1 PF-SLN 冻干粉粒径 (A) 及 Zeta 电位 (B) 分布图 Fig. 1 Particle size (A) and Zeta potential (B) of PF-SLN lyophilized powder

2.6.2 PF-SLN 冻干粉差示扫描量热法(DSC)分析 将 GB、PF、PF 物理混合物冻干粉及 PF-SLN 冻干粉进行 DSC 分析。以氧化铝为参比物,在氮气流中,从 30 到 100 ,以 5 /min 的速率升温扫描,结果见图 2。由分析结果可知,PF 在 66.9 有吸热峰,PF 物理混合物在 73.4 有吸热峰,与辅料 GB 的吸热峰接近(74.6 ),而 PF-SLN 冻干粉在 70.6 有吸热峰,说明 PF 以无定形态融合于纳米粒子中。

**2.6.3** PF-SLN 冻干粉 X 射线衍射( XRD )分析 采用 XRD 分析测试样品 ( P188、HPMC、PF 原料、PF-NS 冻干粉 )。测试条件为 CuKa 作为辐射源,衍射 ( r=0.154 nm ),40 kV,154 mA,连续扫描,扫描速度  $5^{\circ}$ /min,间隔  $0.1^{\circ}$ 。通过不同晶面发生的衍射现象的强度来绘制衍射图,以得到样品晶体结构

和粒度方面的信息。分析结果见图 3。由分析结果可知, PF-SLN 冻干粉与 PF 原料药的 XRD 谱图相似,可能是多成分相互影响掩盖了葛根素等主要成分的晶体衍射信息。

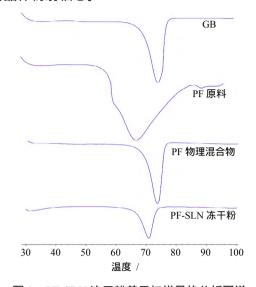



图 2 PF-SLN 冻干粉差示扫描量热分析图谱 Fig. 2 DSC curves of PF-SLN lyophilized powder

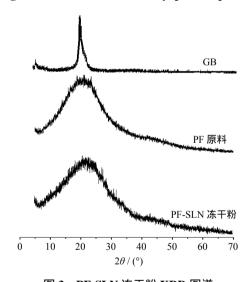
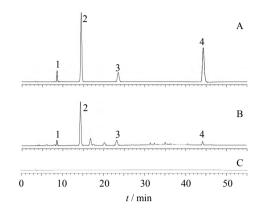



图 3 PF-SLN 冻干粉 XRD 图谱 Fig. 3 XRD spectra of PF-SLN lyophilized powder

2.7 HPLC 测定 PF-SLN 冻干粉中 4 种有效成分方法建立

建立 PF-SLN 冻干粉中 4 种有效成分 HPLC 测定方法过程中,对照品溶液的制备、色谱条件、检测限及定量限、线性关系考察及精密度试验参见文献报道<sup>[4]</sup>。

2.7.1 供试品溶液的制备 精密称取 PF-SLN 冻干 粉胶囊内容物 0.20~g , 置 25~mL 量瓶中 , 加入 30% 乙醇溶液稀释至刻度 , 微孔滤膜滤过 , 即得。


2.7.2 空白供试品溶液的制备 按处方比例称取缺 PF 原料的辅料 制得空白 SLN 冻干粉 称取  $0.40~\mathrm{g}$  , 同法制备即得。

2.7.3 系统适应性试验 精密吸取空白供试品溶液、供试品溶液及混合对照品溶液各 10 μL,注入液相色谱仪,分析,结果见图 4。由分析结果可知,3′-羟基葛根素、葛根素、大豆苷和大豆苷元吸收峰分离良好,辅料对测定无干扰。

2.7.4 重复性试验 精密称取 PF-SLN 冻干粉 0.20 g,6份,按"2.7.2"项下供试品溶液的制备方法制备。进样分析,所得各成分质量分数分别为 0.576、5.776、0.812、0.291 mg/g,其 RSD 分别为 1.33%、1.09%、1.04%、1.29%。表明本法重复性良好。2.7.5 稳定性试验 于 0、1、2、4、8 h,分别精密吸取供试品溶液,注入色谱仪分析,测得各成分峰面积的 RSD 分别为 1.37%、1.91%、1.44%、0.97%。表明供试品溶液在 8 h 内稳定。

2.7.6 加样回收率试验 精密称取已测定的 PF-SLN 冻干粉 0.10 g,6份,分别精密加入相当量的

对照品溶液,挥干溶剂,同"2.7.1"供试品溶液的制备方法处理,测定,计算加样回收率,结果见表7。试验结果表明,回收率符合规定。



1-3'-羟基葛根素 2-葛根素 3-大豆苷 4-大豆苷元 1-3'-hydroxypuerarin 2-puerarin 3-daidzin 4-daidzein

图 4 混合对照品 (A)、PF-SLN 冻干粉 (B) 及空白 供试品(C) 的 HPLC 图

Fig. 4 HPLC of mixed reference substances (A), PF-SLN lyophilized powder (B), and blank sample (C)

表 7 PF-SLN 冻干粉胶囊中 4 种成分的回收率测定结果  $(x \pm s, n = 6)$ 

Table 7 Recoveries of four components in PF-SLN lyophilized powder capsules  $(\bar{x} \pm s, n = 6)$ 

| 成分       | 样品中质量 / mg | 加入量 / mg | 测得量 / mg                | 回收率 / %           | RSD / % |
|----------|------------|----------|-------------------------|-------------------|---------|
| 3′-羟基葛根素 | 0.057 6    | 0.058 8  | $0.116\ 8 \pm 0.001\ 6$ | $100.62 \pm 2.74$ | 2.72    |
| 葛根素      | 0.577 6    | 0.555 2  | $1.125\ 8 \pm 0.011\ 8$ | $98.74 \pm 2.12$  | 2.15    |
| 大豆苷      | 0.081 2    | 0.083 3  | $0.164\ 1 \pm 0.003\ 1$ | $99.56 \pm 3.69$  | 3.71    |
| 大豆苷元     | 0.029 1    | 0.026 3  | $0.0549 \pm 0.0009$     | $98.42 \pm 3.46$  | 3.52    |

## 2.8 释放度测定

取 PF-SLN 冻干粉及其物理混合物各  $4.8\,\mathrm{g}$  , 各  $6\,\mathrm{fb}$  , 采用《中国药典》2010 年版一部附录 XC 规定的溶出度测定项下第一法转篮法,以人工胃液 (pH 1.2 )300 mL 为溶出介质 ,温度为(  $37\pm0.5$  ) ,转速  $100\,\mathrm{r/min}$ 。分别于 0.5、 1.0、 1.5、 2.0、 2.5、 3.0、 4.0、 5.0、  $6.0\,\mathrm{h}$  取样  $1\,\mathrm{mL}$  ,同时补充同温度超纯水  $1\,\mathrm{mL}$  , $0.45\,\mathrm{\mu m}$  微孔滤膜滤过,精密量取滤液  $10\,\mathrm{\mu L}$  ,HPLC 分析,计算  $4\,\mathrm{m}$  种有效成分的累积溶出量,以时间对溶出量作图得溶出曲线,结果见图 5。

由 DDsolver 软件 Univariate ANOVA 分析数据,可知 PF-SLN 冻干粉胶囊中 4 种有效成分的溶出具有明显的突释现象,1 h 的累计释放已超过 70%以上,1 h 之后释放明显放缓,6 h 时的累计释放 95%左右,而其物理混合物 2 h 累计溶出已达 95%,PF-SLN 冻干粉各成分释放速率均明显低于其物理混

合物 (P < 0.001), 其中 4 种有效成分的释放速率无明显差异 (P > 0.5)。

由 DDsolver 软件 Weibull Model 分析(表 8) 结果说明, PF-SLN 冻干粉可显著延缓葛根素等难 溶性成分的释放速度,4种成分基本为同步释放。

#### 3 讨论

释放速率是指药物于一定条件下从制剂中溶出释放的速度和程度,是一种控制药物制剂质量的体外检测方法。释放度试验可部分反映固体制剂中主药的某些理化性质、处方组成、辅料品种及性质、生产工艺等差异。目前,体外释放试验已作为固体制剂的质控手段之一。中药制剂有效成分的释放是体内吸收的必要前提,也必将影响其药效的发挥。为改善 PF 的生物利用度问题,本实验采用高压均质法制备 PF-SLN ,并测定 PF-SLN 冻干粉中 4 种有效成分的体外释放度。PF-SLN 冻干粉中 4 种有效

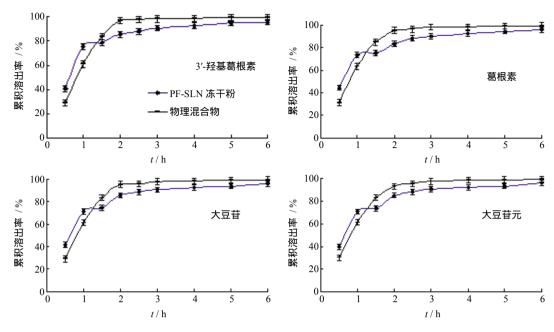



图 5 PF-SLN 冻干粉 4 种有效成分的释放曲线

Fig. 5 Release curves of four effective components in PF-SLN lyophilized powder

表 8 4 种黄酮类成分 DDsolver 测定结果  $(\overline{x} \pm s, n = 6)$ Table 8 DDsolver results of four flavonoid components  $(\overline{x} \pm s, n = 6)$ 

| Weibull         | ull 3'-羟基葛根素    |                 | 葛根              | 素               | 大豆              | Ħ               | 大豆苷元            |                 |  |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|
| 参数              | PF-SLN 冻干粉      | 物理混合物           |  |
| $T_{50}$ / h    | $0.55 \pm 0.01$ | $0.82 \pm 0.01$ | $0.55 \pm 0.02$ | $0.77 \pm 0.02$ | $0.58 \pm 0.02$ | $0.80 \pm 0.03$ | $0.59 \pm 0.02$ | $0.79 \pm 0.01$ |  |
| $T_{\rm d}$ / h | $0.69 \pm 0.02$ | $1.04 \pm 0.02$ | $0.77 \pm 0.03$ | $0.98 \pm 0.02$ | $0.81 \pm 0.05$ | $1.02 \pm 0.03$ | $0.83 \pm 0.02$ | $1.02 \pm 0.02$ |  |
| β               | $0.36 \pm 0.01$ | $2.26 \pm 0.35$ | $0.42 \pm 0.02$ | $1.51 \pm 0.28$ | $0.44 \pm 0.03$ | $1.56 \pm 0.30$ | $0.45 \pm 0.02$ | $1.33 \pm 0.13$ |  |

 $T_{50}$  及  $T_{\rm d}$  分别指药物溶出 50% 及 63.2% 所需的时间, $\beta$  是特征曲线的形状参数

 $T_{50}$  and  $T_{d}$  are time required for 50% and 63.2% drug dissolution, respectively;  $\beta$  is the shape parameter which characterizes the curve

成分存在突释现象,1 h 之后释放明显放缓,6 h 累积释放 95%左右,而其物理混合物 2 h 累积溶出释放已达 95%,其释放速率显著慢于其物理混合物。作者曾考察 PF 纳米混悬液冻干粉中 4 种有效成分的溶出度,发现 15 min 基本全部释放,释放速率明显快于其物理混合物冻干粉<sup>[4]</sup>。朱昆<sup>[13]</sup>以硬脂酸、卵磷脂、泊洛沙姆 188 组方,采用乳化蒸发-低温固化法制备 PF-SLN,其粒径 200~300 nm,5 h 体外释放近 35%。

SLN 作为 20 世纪 90 年代初发展起来的新型毫微粒类给药系统已经受到越来越多的关注,尤其是针对一些水难溶性药物。SLN 是经过不同种方法制成粒径在 50~1 000 nm 的固态胶态给药系统,与其他微粒相比,SLN 有更多的优点,如控制药物的释放、提高药物的生物利用度、增加药物的靶向作用,并且具有多种给药途径(如皮肤、口服、静脉注射),

使大规模生产成为了可能。当药物粒子 <  $1 \mu m$  时, 其内在溶出速率会发生突然增大的现象,这是本实 验观察到的突释现象的原因之一<sup>[5]</sup>。

本实验对PF-SLN 冻干粉的研究结果表明 、SLN可以显著延缓难溶性药物的体外释放速度,适合作为难溶性药物 PF 的给药系统。条件许可时可进一步考察 PF-SLN 冻干粉在模拟肠液中的释放特性以及生物利用度及其体内分布。

# 参考文献

- [1] 中国药典 [S]. 一部. 2010.
- [2] 付爱珍, 吴学芹, 董 娟, 等. 葛根正丁醇部位的化学成分研究 [J]. 现代药物与临床, 2013, 28(4): 484-486.
- [3] 国家食品药品监督管理局国家药品标准颁布件 [S]. YBZ013422006-2009Z, 2009.
- [4] 王治平,周 群,樊 化,等.口服葛根总黄酮纳米混 悬液冻干粉的制备及其 4 种有效成分溶出度考察 [J].中草药,2014,45(5):635-641.

- [5] Mehnert W, M\u00e4der K. Solid lipid nanoparticles production, characterization and applications [J]. Adv Drug Deliv Rev, 2012, 64: 83-101.
- [6] Burra M, Jukanti R, Janga K Y, et al. Enhanced intestinal absorption and bioavailability of raloxifene hydrochloride via lyophilized solid lipid nanoparticles [J]. Adv Powder Technol, 2013, 24: 393-402.
- [7] Kumar S, Randhawa J K. Preparation and characterization of Paliperidone loaded solid lipid nanoparticles [J]. Colloids Surf B: Biointerfaces, 2013, 102: 562-568.
- [8] 张生杰, 焦文温, 张 瑜, 等. 异穿心莲内酯固体脂质 纳米粒的制备及体外释放研究 [J]. 中草药, 2012, 43(12): 2390-2395.
- [9] Silva AC, González-Mira E, García M L, *et al.* Preparation, characterization and biocompatibility studies

- on risperidone-loaded solid lipid nanoparticles (SLN): high pressure homogenization versus ultrasound [J]. *Colloids Surf B: Biointerfaces*, 2011, 86: 158-165.
- [10] Durán-Lobato M, Enguix-González A, Fernández-Arévalo M, *et al.* Statistical analysis of solid lipid nanoparticles produced by high-pressure homogenization: a practical prediction approach [J]. *J Nanopart Res*, 2013, 15: 1443.
- [11] 郝吉福, 房信胜, 王建筑, 等. 应用 Box-Behnken 实验设计优化水飞蓟素固体脂质纳米粒处方研究 [J]. 中草药, 2011, 42(11): 2221-2225.
- [12] 王婧雯, 张三奇, 文爱东, 等. 正交试验法优选齐墩果 酸固体脂质纳米粒的制备工艺 [J]. 中草药, 2007, 38(5): 683-685.
- [13] 朱 昆. 葛根总黄酮固体脂质纳米粒的研制 [D]. 长春: 吉林大学, 2009.