www. zgys. org 研究论文

阿托伐他汀钙纳米结构脂质载体对大鼠心肌缺血/再灌注损伤的保护作用研究

姜雪¹ 周艺² 徐兵¹ (1.徐州医科大学附属连云港医院药学部 江苏连云港 222002; 2.江苏省连云港市第一人民医院)

摘 要 目的:制备阿托伐他汀钙纳米结构脂质载体,并评价其对大鼠心肌缺血/再灌注损伤的保护作用。方法:采用热熔乳化—高压均质技术制备阿托伐他汀钙纳米结构脂质载体,以粒径分布和包封率为评价指标,通过中心复合设计—效应面法优化阿托伐他汀钙纳米结构脂质载体的处方,并对纳米结构脂质载体的表面形态、粒径分布、Zeta 电位、体外释药行为进行了评价。考察阿托伐他汀钙纳米结构脂质载体对大鼠心肌缺血/再灌注损伤的保护作用。结果:阿托伐他汀钙纳米结构脂质载体的处方组成:山嵛酸甘油酯和油酸聚乙二醇甘油酯作为油相(4.0% μ/ν)、大豆磷脂作为表面活性剂(1.5% μ/ν)、脂药比为(20 1 μ/ν)。透射电镜观察纳米结构脂质载体大小比较均匀。是规则球形或类球形分布,平均粒径为(122.6 ± 39.7) nm Zeta电位为(-26.4 ± 3.7) mV;阿托伐他汀钙纳米结构脂质载体 24 h 内累积释放度为(91.4 ± 4.4)%;药效学研究表明阿托伐他汀钙纳米结构脂质载体可以显著提高大鼠心肌缺血/再灌注损伤的保护作用。结论:阿托伐他汀钙纳米结构脂质载体能够减少心肌缺血/再灌注损伤面积,对大鼠心肌缺血/再灌注损伤具有良好的保护作用。

关键词 阿托伐他汀钙; 纳米结构脂质载体; 热熔乳化-高压均质技术; 心肌缺血/再灌注损伤

中图分类号: R965.1 文献标识码: A 文章编号: 1008-049X(2016) 12-2212-06

Protective Effects of Atorvastatin Calcium-loaded Nanostructured Lipid Carriers on Heart Ischemia/Reperfusion Injury in Rats

Jiang Xue¹, Zhou Yi², Xu Bing¹ (1. Department of Pharmacy, Affiliated Lianyungang Hospital, Xuzhou Medical University, Jiangsu Lianyungang 222002, China; 2. The First People's Hospital of Lianyungang)

ABSTRACT Objective: To prepare atorvastatin calcium-loaded nanostructured lipid carriers (Ato Ca-loaded NLCs) and investigate the protective effects of Ato Ca-loaded NLCs on heart ischemia/reperfusion injury in rats. **Methods**: Ato Ca-loaded NLCs were prepared by melt-emulsion and high pressure homogenization technique, and the formula was optimized by the central composite design using Design-Expert 8.0.6 software. The optimized Ato Ca-loaded NLCs were characterized by the morphology, mean particle size and zeta potential. The *in vitro* drug release behavior of NLCs was studied as well. The protective effect of Ato Ca-loaded NLCs on heart ischemia/reperfusion injury in rats was evaluated. **Results**: The optimized Ato Ca-loaded NLCs formula was composed of Compritol 888 ATO and Labrafil M 1944 CS as the lipid phase (4.0%, w/v), soybean lecithin as the surfactant (1.5%, w/v) and the ratio of lipid to drug of 20 1 (w/w). Ato Ca-loaded NLCs were small spheres under a transmission electron microscope. The mean particle size and the zeta potential of the optimized NLCs was (122.6 ± 39.7) nm and (-26.4 ± 3.7) mV, respectively. The *in vitro* release studies showed that the release of drug from the optimized NLCs reached up to (91.4 ± 4.4) % in 24 h. Ato Ca-loaded NLCs could increase the protective effects effectively on heart ischemia/reperfusion injury in rats. **Conclusion**: Ato Ca-loaded NLCs can reduce the infracted area of heart and effectively protect against heart ischemia/reperfusion injury in rats.

KEY WORDS Atorvastatin calcium; Nanostructured lipid carriers; Melt-emulsion and high pressure homogenization technique; Heart ischemia/reperfusion injury

心肌梗死是指急性、持续性缺血、缺氧(冠状动脉功能不全)所引起的心肌坏死。发生心肌梗死后果较为严重,在最短的时间内恢复心肌血液供给是抢救濒临死亡心肌的唯一有效方法。目前临床上通常使用经皮冠状动脉介入或溶栓治疗来治疗心肌梗死,效果较为显著,然而存在的问题是,心肌缺血后再灌注过程中容易造成心肌更严重的损害[1]。因此,如何预防心肌缺血/再灌注损伤是近年来研究的热点问题[2~4]。阿托伐他汀钙属于 HMG-CoA 还原

酶选择性抑制药,通过抑制 HMG-CoA 还原酶和胆固醇在肝脏的生物合成而降低血浆胆固醇和脂蛋白水平,近年来有研究表明^[5~7],阿托伐他汀钙能够保护心肌缺血/再灌注过程中的损伤,减少心室重塑,改善心功能。

纳米结构脂质载体(nanostructured lipid carriers, NLCs) 是在固体脂质纳米粒的基础上逐渐发展起来的一种新型胶体给药系统, NLCs 具有增加药物溶解度, 提高药物靶向性, 延缓药物释放,减少药物

通讯作者: 徐兵 Tel: (0518) 85605029 E-mail: docwangdan@163.com

用量以降低毒性等优点,已成为新型给药系统研究的热点^[8,9]。本研究以阿托伐他汀钙为模型药制备阿托伐他汀钙纳米结构脂质载体,同时以心脏缺血/再灌注损伤大鼠为药效模型,考察阿托伐他汀钙纳米结构脂质载体对大鼠心脏缺血/再灌注损伤的保护作用。

1 仪器与材料

LC-IOAD 高效液相色谱仪(日本岛津株式会社); SPD-IOA 型紫外检测器(日本岛津株式会社); Nicomp380 Z3000 激光粒度测定仪(苏州微流纳米生物技术有限公司); JEM-1200EX 型透射电子显微镜(日本电子公司); 电子分析天平(河南兄弟仪器设备有限公司); 台式离心机(上海安亭科学仪器厂); 溶出试验仪(天津天大天发科技有限公司); IOK 超滤离心管(上海新睿生物科技有限公司); 透析袋(截留相对分子质量: 14 000 道尔顿,上海百赛生物技术有限公司)。

阿托伐他汀钙原料药(江苏盛迪医药有限公司,以阿托伐他汀计纯度>99.0%);阿托伐他汀钙对照品(中国食品药品检定研究院,批号:100590-201303,以阿托伐他汀计纯度>99.5%);山嵛酸甘油酯[Compritol 888 ATO 德国巴斯夫(上海)公司惠赠 批号:ASC12366];油酸聚乙二醇甘油酯(Labrafil M 1944 CS 法国嘉法狮公司,批号:L273729);大豆卵磷脂(上海太伟药业,批号:20150123-2)。

清洁级雄性 SD 大鼠(由徐州医学院实验动物中心提供,许可证号: JSJK(苏) -2012-008) $6 \sim 8$ 周龄 体质量($220 \sim 250$) g。

2 方法与结果

2.1 方法学考察

2.1.1 色谱条件 色谱柱: Hypersil ODS-C₁₈柱 (250 mm×4.6 mm 5 μm); 流动相: 乙腈-0.02 mol·L⁻¹磷酸二氢钾(60:40 μμ磷酸调 pH 至4.0); 检测波长: 246 nm; 流速: 1.0 ml·min⁻¹; 柱温: 室温; 进样体积: 20 μl。

2.1.2 线性关系 称取 10 mg 阿托伐他汀钙对照品置于 100 ml 量瓶中,加入少量乙腈振摇溶解,用流动相稀释至刻度,摇匀,作为对照品贮备液(100 μ g·ml⁻¹)。精密量取对照品贮备液用流动相稀释成浓度为1.0 2.0 5.0 μ 0.0 μ 0.0

=0.999 9)。可见阿托伐他汀钙在 $1.0 \sim 20.0~\mu g$ • $m l^{-1}$ 浓度范围内线药物浓度与峰面积性关系良好。 2.2 阿托伐他汀钙纳米结构脂质载体包封率的测定

精密移取阿托伐他汀钙纳米结构脂质载体 0.5 ml置于超滤离心管(截留相对分子质量: 10 000 道尔顿) 上端 在离心速度为 5 000 r·min⁻¹条件下离心处理 10 min 将滤液转移到 10 ml 量瓶中 加入乙腈溶解 定容; 另精密移取阿托伐他汀钙纳米结构脂质载体 0.5 ml置 10 ml 量瓶中 ,加入乙腈超声(250 W 40 kHz)至溶液透明 ,定容。分别取上述两种溶液续滤液 HPLC 测定。按下式计算包封率(EE):

$$EE(\%) = (1 - C_{\ddot{B}B}/C_{\ddot{A}}) \times 100\%$$

其中: $C_{\dot{m}g}$ 为阿托伐他汀钙纳米结构脂质载体溶液中未被包封的阿托伐他汀钙浓度; $C_{\dot{\omega}}$ 为阿托伐他汀钙纳米结构脂质载体溶液中阿托伐他汀钙的总浓度。

2.3 阿托伐他汀钙纳米结构脂质载体的制备方法

采用热熔乳化—高压均质技术制备阿托伐他汀钙纳米结构脂质载体^[10]。①将处方量的大豆磷脂和泊洛沙姆 188 置于锥形瓶中,加蒸馏水 40 ml 在75 ℃恒温水浴,磁力搅拌速度 1 500 r•min⁻¹使其完全溶解,得到水相;②将处方量的单硬脂酸甘油酯、油酸聚乙二醇甘油酯和阿托伐他汀钙置于锥形瓶中在75 ℃恒温水浴,磁力搅拌速度 1 500 r•min⁻¹使其完全溶解,得到油相;③在高速剪切分散机搅拌下(10000 r•min⁻¹) 将含药油相缓慢加入到水相中,持续剪切乳化 10 min,制得初乳;④将初乳在80 MPa 压力下,通过高压匀质机均质 4 次,用蒸馏水稀释定容至全量,冷至室温,即制备成阿托伐他汀钙纳米结构脂质载体。

2.4 阿托伐他汀钙纳米结构脂质载体处方优化

2.4.1 中心复合设计-效应面法优化阿托伐他汀钙纳米结构脂质载体处方 通过查阅相关文献[11] 并结合处方单因素考察 确定选择混合脂质浓度、大豆磷脂浓度和脂药比作为制剂处方的 3 个考察因素 , 并以纳米结构脂质载体平均粒径、包封率作为评价指标 ,用来筛选阿托伐他汀钙纳米结构脂质载体最优处方配比。因素水平见表 1 ,实验安排及结果见表 2。

2.4.2 方差分析和显著性检验 选择"Design-Expert 8.0.6"实验设计软件中的"中心复合实验设计"对表 2 中的实验数据进行处理,以评价指标(因变量)分别对各因素(自变量)进行多元线性回归和

表 1 中心复合设计试验中的变量水平

自变量	水平		
日文里	低 (-1)	中(0)	高 (+1)
X ₁ : 混合脂质浓度(%)	2.0	4.0	6.0
X ₂ : 大豆磷脂浓度(%)	1.5	3.0	4.5
X ₃ : 脂药比	20.0	40.0	60.0
因变量	目标值		
Y ₁ : 平均粒径(nm)	最小		
Y ₂ : 包封率(%)	最大		

表 2 中心复合设计试验中的自变量(X) 和因变量(Y)

	自变量		因变量		
实验序号	X ₁ (%)	X ₂ (%)	X_3	Y ₁ (nm)	Y ₂ (%)
1	4.0	4.5	60.0	103.6	87.4
2	4.0	3.0	40.0	112.7	83.7
3	6.0	1.5	40.0	328.1	56.7
4	2.0	3.0	60.0	113.9	79.4
5	6.0	4.5	40.0	201.6	80.1
6	4.0	1.5	60.0	146.3	65.0
7	2.0	4.5	40.0	99.5	78.3
8	4.0	1.5	20.0	146.2	64.9
9	6.0	3.0	20.0	247.3	72.7
10	2.0	3.0	20.0	102.3	78.2
11	4.0	4.5	20.0	103.4	81.4
12	4.0	3.0	40.0	101.7	83.7
13	6.0	3.0	60.0	215.8	76.9
14	4.0	3.0	40.0	97.9	85.8
15	2.0	1.5	40.0	90.7	73.8

二次多元方程拟合。对二次多元方程中的各项系数进行 F 检验(保留 P > 0.05项),所得结果见表 3;二次多元方程的相关系数结果见表 4。

表 3 二次多元方程的方差分析

因变量	来源	平方和	平均值	F	P
Y ₁ : 平均粒径	模型	67143.57	7460.40	27.22	0.0010
	X_1	42983.12	42983.12	156.80	< 0.0001
	X_2	5161.28	5161.28	18.83	0.0074
	X_1X_2	4576.52	4576.52	16.70	0.0095
	X_{12}	13475.71	13475.71	49.16	0.0009
	残差	1370.61	274.12		
	失拟项	1252.45	417.48	7.07	0.1265
	纯误差	118.16	59.08		
	总和	68514.18			
Y ₂ : 包封率	模型	1016.43	112.94	22.78	0.0015
	X_1	67.86	67.86	13.69	0.0140
	X_2	557.78	557.78	112.51	0.0001
	X_1X_2	89.30	89.30	18.01	0.0081
	X_{12}	93.23	93.23	18.81	0.0075
	X_{22}	188.76	188.76	38.08	0.0016
	X_{32}	24.48	24.48	4.94	0.0769
	残差	24.79	4.96		
	失拟项	21.85	7.28	4.95	0.1725
	纯误差	2.94	1.47		
	总和	1041.21			

表 4 二次多元方程的相关系数

因变量	相关系数 R^2	矫正相关系数 R^2	预测相关系数 R^2	精密度
Y ₁ : 平均粒径	0.9800	0.9440	0.9336	16.592
Y ₂ : 包封率	0.9762	0.9333	09379	16.337

两个拟合方程的相关系数 R^2 分别为0.9800和 0.9762 表示方程有较好的拟合度 ,说明设计模型拟合程度良好 ,能够对阿托伐他汀钙纳米结构脂质载体的处方做出相对准确的预测; 两个拟合方程的矫正相关系数 R^2 分别为0.9440和0.9333,表明 97.67%和93.33%实验数据的变异性可用于两个回归模型来解释; 预测相关系数 R^2 和相关系数 R^2 ,矫正相关系数 R^2 较为接近 ,说明模型有足够的预测能力; 精密度是有效信号与噪音的比值 ,它的值通常应大于 4 ,说明这个模型能合适地反映实验结果。

采用"Design-Expert 8.0.6"实验设计软件绘制 各因素(自变量)与评价指标(因变量)的效应曲面 图 结果见图 1、图 2。

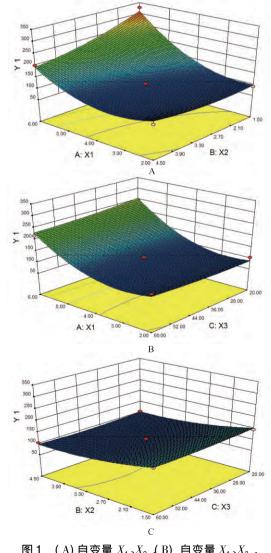


图 1 (A) 自变量 $X_1 \, X_2$ (B) 自变量 $X_1 \, X_3$, (C) 自变量 $X_2 \, X_3$ 与因变量 Y_1 的 3D 效应面图

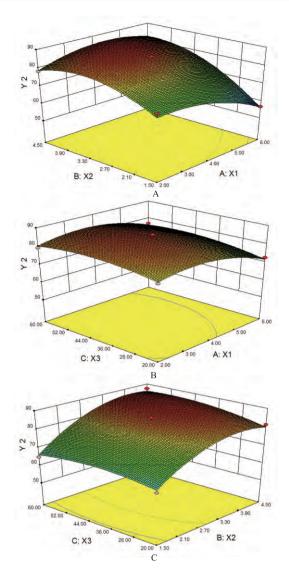


图 2 (A) 自变量 $X_1 \ X_2$ (B) 自变量 $X_1 \ X_3$, (C) 自变量 X_2 、 X_3 与因变量 Y_2 的 3D 效应面图

2.4.3 效应面优化与预测 以阿托伐他汀钙纳米 结构脂质载体平均粒径最小、包封率最大为目标值, 根据 "Design-Expert 8.0.6" 实验设计软件得到的最 佳处方为: 混合脂质浓度为(4.0%, w/v) ,大豆磷脂 浓度为 $(1.5\% \mu/v)$ "脂药比为(20:1, w/w)。按 照最优处方制备 3 批阿托伐他汀钙纳米结构脂质载 体 分别测定平均粒径和包封率 并与模型给出的预 测值进行比较 结果见表 5。由结果可知 实验观察 值和模型预测值比较接近,偏差的绝对值均小于 10% 说明模型预测性良好。

表 5 阿托伐他汀钙纳米结构脂质载体 各指标预测值和观察值(n=3)

因变量	预测值	观测值(预测偏差(%)
Y ₁ : 平均粒径(nm)	112.6	118.6 ± 23.4	+5.3
Y2:包封率(%)	85.2	86.5 ± 1.5	+1.5

注: 偏差(%) = (观测值 - 预测值) / 预测值 × 100%。

2.5 阿托伐他汀钙纳米结构脂质载的质量评价

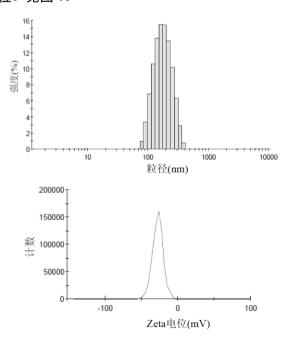

微观形态观察 取阿托伐他汀钙纳米结构 脂质载体加适量蒸馏水稀释,取上述液体适量滴加 在喷碳铜丝网表面,均匀铺展,用滤纸吸去多余水 分,滴加2.0%磷钨酸负染10 min,自然挥干水分,于 透射电镜下阿托伐他汀钙纳米结构脂质载体的微观 结构与表面形态,并拍摄照片。见图3。

图 3 阿托伐他汀钙纳米结构脂质载体透射 电镜图(×16000)

通过透射电镜照片可知,所制备的阿托伐他汀 钙纳米结构脂质载体大小比较均匀 表面光滑 呈规 则球形或类球形分布,大部分粒子的粒径在 100 nm 左右。

2.5.2 粒径分布和 Zeta 电位测定 取阿托伐他汀 钙纳米结构脂质载体经蒸馏水稀释后,采用 ZetaSizer 2000HS 激光粒度测定仪测定其粒径分布和 Zeta 电位。见图4。

阿托伐他汀钙纳米结构脂质载体的 粒径分布和 Zeta 电位

阿托伐他汀钙纳米结构脂质载体的粒径呈单峰成分布 ,平均粒径为(122.6 ± 39.7) nm Zeta 电位为(-26.4 ± 3.7) mV。

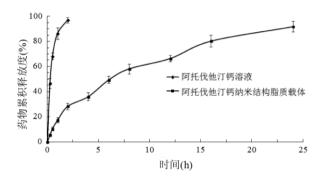


图 5 阿托伐他汀钙纳米结构脂质载体与市售 阿托伐他汀钙溶液体外释放曲线 (n=6)

体外释放研究表明,阿托伐他汀钙溶液中药物可在2.0 h内完全释放;阿托伐他汀钙纳米结构脂质载体中药物在前2.0 h内有突释现象,在随后的释药过程中药物持续缓慢释放 24 h 药物的累积释放量为(91.4 ± 4.4)%,表明阿托伐他汀钙纳米结构脂质载体具有延缓药物释放的作用。

2.5.4 稳定性考察 按照最优处方制备 3 批阿托 伐他汀钙纳米结构脂质载体 ,经0.22 μ m微孔滤膜 过滤分装到安瓶中 ,每瓶 5 ml ,充氮后密封 ,分别在低温(5 ∞) 和室温(25 \pm 5 ∞) 条件下放置 3 个月 ,并在 1 2 3 个月取样观察样品的外观 检测样品的 平均粒径、多分散指数(PdI)、Zeta 电位和包封率等 理化性质 结果见表 6。

实验结果表明,阿托伐他汀钙纳米结构脂质载体在室温($25 \pm 5 \%$)条件下放置 $1 \land 7$ 月,平均粒径开始增大,包封率降低;样品放置到第 $2 \land 7$ 月,溶液变成乳白色;放置到第 $3 \land 7$ 月,整个样品已成为乳白色胶状状,说明阿托伐他汀钙纳米结构脂质载体在

表 6 阿托伐他汀钙纳米结构脂质载体在 5 $^{\circ}$ 和 室温条件下稳定性 $(\bar{x} \pm s, n = 3)$

 放置 条件	测试 周期 (月)	外观	平均粒径 (nm)	Zeta 电位 (mV)	包封率 (%)
	初始	淡蓝色乳液	121.6 ± 33.2	-28.1 ± 2.5	87.4 ± 0.8
5 ℃	1	淡蓝色乳液	127.2 ± 36.4	-26.9 ± 3.8	85.2 ± 0.6
	2	淡蓝色乳液	132.4 ± 31.6	-27.2 ± 2.8	83.7 ± 1.1
	3	淡蓝色乳液	142.0 ± 38.9	-26.5 ± 2.1	82.3 ± 1.9
25 ±5℃	1	淡蓝色乳液	176.4 ± 36.5	-22.7 ± 3.4	74.1 ± 2.4
	2	乳白色溶液	/	/	/
	3	乳白色胶状物	/	/	/

室温($25 \pm 5 \,^{\circ}$ C)条件下放置不稳定;阿托伐他汀钙纳米结构脂质载体在低温($5 \,^{\circ}$ C)条件下放置 $3 \,^{\circ}$ 个月 平均粒径、PdI、Zeta 电位和包封率基本未发生变化 战认为阿托伐他汀钙纳米结构脂质载体在低温($5 \,^{\circ}$ C)条件下稳定性较好。

- 2.6 阿托伐他汀钙纳米结构脂质载体的药效学评价
- 2.6.1 实验动物模型建立 将雄性 SD 大鼠分别 在腹腔注射 10% 水合氯醛 ,待大鼠完全麻醉 ,固定在手术台 插管。沿左侧胸骨剪开1.5 cm切口 ,并剪断第3~4 肋软骨 ,分离肌肉和肋骨 ,暴露纵膈及心脏。用棉签小心向右上起心脏 ,找到与左冠状动脉伴行的静脉 ,沿着左心耳下缘 2 mm 处使用 5 号丝线穿过 将左冠状动脉和静脉结扎 ,造成心肌缺血 ,30 min 后松开结扎线 ,使心肌再灌注 即得大鼠心脏缺血/再灌注模型。
- 2.6.2 分组与给药 取以 18 只雄性 SD 大鼠 ,随机分为 3 组 ,每组 6 只 ,分别为生理盐水组、药物溶液组(含阿托伐他汀钙 5 mg·ml⁻¹)和纳米结构脂质载体组(含阿托伐他汀钙 5 mg·ml⁻¹)。3 组在手术前 5 d 分别给予生理盐水灌胃(生理盐水组),阿托伐他汀钙溶液 10 mg·kg⁻¹·d⁻¹灌胃(溶液组) 厕托伐他汀钙纳米结构脂质载体 10 mg·kg⁻¹·d⁻¹灌胃(纳米结构脂质载体组)。手术前 1 h 3 组均再次灌胃 ,并按照 "2.6.1" 项下手术操作 将左冠状动脉和静脉结扎 造成心肌缺血 30 min 后松开结扎线 ,使心肌再灌注 60 min。
- 2.6.3 心肌梗死面积的检测 3 组雄性 SD 大鼠心肌缺血/再灌注结束后 将大鼠心脏放置到液氮中冻实后摘取 "沿着心室用刀片将心肌切成 $1.5~\mathrm{mm}$ 厚度的薄片。放入 10% 四氮唑溶液中染色 , $15~\mathrm{min}$ 后取出并放入蒸馏水中终止反应。利用 Image J 软件分析计算梗死面积百分比。心肌梗死面积 = 梗死区域/全心区域×100%。实验数据采用 SPSS 19.0统计学软件处理分析 ,所有数据均以 $\bar{x}\pm s$ 表示 ,两组

独立样本之间采用 t 检验 P < 0.05 为差异有统计学意义。结果见表 7。

表 7 各组心肌缺血/再灌注后心肌梗死 面积的比较($\bar{x} \pm s n = 6$)

组别	梗死面积所占比率(%)
生理盐水组	72.1 ± 6.7
药物溶液组	44.3 ± 4.9^{a}
纳米结构脂质载体组	21.5 ± 3.8^{ab}

注: 与生理盐水组比较 , P < 0.05; 与溶液组比较 , P < 0.05。

通过对 3 组大鼠心肌梗死面积的比较 ,阿托伐他汀钙溶液组大鼠心肌缺血/再灌注后心肌梗死面积与生理盐水组比较明显减少 ,具有统计学意义(P < 0.05) ,说明阿托伐他汀能够减少心肌缺血/再灌注损伤的心肌梗死面积; 同时 ,阿托伐他汀钙纳米结构脂质载体组大鼠心肌缺血/再灌注后心肌梗死面积与溶液组比较明显减少 ,具有统计学意义(P < 0.05) ,说明将阿托伐他汀钙制备成纳米结构脂质载体后可显著提高阿托伐他汀钙对大鼠心肌缺血/再灌注损伤具的保护作用。

3 讨论

目前,文献报道了多种制备纳米结构脂质载体的方法,包括: 热熔乳化-高压均质法、熔融-超声法、溶剂挥散法、微乳法、超声分散法[12]。热熔乳化-高压均质法是制备纳米结构脂质载体的常用方法。在热加热条件下将固体脂质、液体脂质和药物混匀后分散于含有表面活性剂的水相中,然后通过高压均质机均质处理制成一定粒径分布的纳米结构脂质载体。与其他制备方法相比,热高压均质法具有操作简便,各工艺参数容易控制,适用于工业化生产等优点。因此本研究采用热熔乳化-高压均质法制备阿托伐他汀钙纳米结构脂质载体。

纳米粒表面通常带有负电荷^[13], Zeta 绝对电位值较高越有利于体系的稳定^[14]。本研究制备的阿托伐他汀钙纳米结构脂质载体 Zeta 电位为(-26.4±3.7) mV Zeta 绝对电位值较高 这可能是由于分子极化作用和乳化剂分子对水中电荷的吸附作用 形成了类似于离子型的双电层结构而产生较高的 Zeta 电位值。同时 ,体系中加入油酸聚乙二醇甘油酯中聚乙二醇长链的存在会阻碍纳米粒的聚集 ,与静电斥力共同作用达到稳定体系的目的。

本研究通过大鼠心肌缺血/再灌注实验结果证明 将阿托伐他汀钙制备成纳米结构脂质载体后可显著提高阿托伐他汀钙对大鼠心肌缺血/再灌注损

伤具的保护作用 其机制可能是由于阿托伐他汀钙 纳米结构脂质载体更容易打开心肌细胞膜和线粒体 KATP 通道^[15] 从而达到了改善心肌缺血/再灌注损伤的保护作用。

从本研究的药效结果可以推测 ,阿托伐他汀钙 纳米结构脂质载体口服给药能够提高药物的生物利 用度 ,可以显著改善药效 ,这可能是一种潜在可行的 口服新制剂 ,值得进一步研究。

参 考 文 献

- 1 Hausenloy DJ, Baxter G, Bell R, et al. Translating novel strategies for cardioprotection: the Hatter Workshop Recommendations [J]. Basic Res Cardiol, 2010, 105(6): 677-686
- 2 路航,王泺璎,王秋静.人参三醇皂苷对大鼠心肌缺血再灌注损伤的保护作用[J].中草药,2016,47(2):275-280
- 3 贺欣,张玉东,李北方. 辛伐他汀缺血后处理对大鼠心肌缺血再灌注损伤的保护作用[J]. 山东医药,2011,51(5): 27-29
- 4 王健,姚天明,韩雅玲,等. 冠心舒通胶囊对大鼠心肌缺血再灌注损伤细胞凋亡影响的实验研究[J]. 辽宁中医杂志 2012,39 (10): 2064-2066
- 5 余慧,秦永文. 阿托伐他汀对大鼠心肌缺血再灌注损伤的影响 [J]. 第二军医大学学报 2012,33(10):1070-1073
- 6 程振东,吴灵振,郭进建,等. 阿托伐他汀后处理对 GK 大鼠心 肌缺血再灌注损伤的保护作用 [J]. 中国动脉硬化杂志,2012,20(8):709-713
- 7 周常青,马捷.阿托伐他汀抗心肌缺血再灌注损伤的作用机制研究[J].临床医药实践,2009,18(7):488-489
- 8 李秋艳,王敏,谢鹏.塞来昔布纳米结构脂质载体的制备及大鼠组织分布研究[J].中国药师,2016(2):258-261
- 9 林燕,吴美媛. 辛伐他汀纳米结构脂质载体的制备与体外研究[J]. 中国药师,2015(8): 1290-1294
- 10 刘韵,陈奋,尹飞,等. 美洛昔康纳米脂质载体的制备及表征 [J]. 沈阳药科大学学报,2013,30(2): 83-86
- 11 杨春荣,孙忻,赵秀峰. Box-Behnken 效应面法优化石杉碱甲纳 米结构脂质载体处方[J]. 沈阳药科大学学报,2011,28(10): 769-774
- 12 姜赛平,田治科,卢晓阳. 纳米结构脂质载体的制备及性质研究进展[J]. 中国医药工业杂志,2008,39(10):773-776
- 13 Schwarz C ,Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery. II. Drug incorporation and physicochemical characterization [J]. J Microencapsul , 1999 , 16(2): 205-213
- 14 Han F , Li SM , Yin R. Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system: Nanostructured lipid carriers [J]. Colloids Surf A Physicochem , 2008 , 315 (S1-3): 210-216
- 15 周常青, 马捷. 阿托伐他汀抗心肌缺血再灌注损伤的作用机制研究[J]. 临床医药实践, 2009, 18(7): 488-489

(2016-03-29 收稿 2016-04-14 修回)